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Image compositing is a fundamental part of high performance visualization on
large-scale parallel machines. Aside from reading a dataset from storage, com-
positing is the most expensive part of the parallel rendering pipeline, because
it requires communication among a large number of processes. On a modern
supercomputer, compositing may generate literally hundreds of thousands of
messages. Thus, developing compositing algorithms that scale with growing
machine size is of crucial importance. Such algorithms have enabled, for exam-
ple, wall-size images that are tens of megapixels in resolution to be composited
at interactive frame rates from all of the nodes of some of the world’s largest
supercomputers and visualization clusters. We begin with a history of clas-
sic parallel image compositing algorithms: direct-send and binary-swap. From
there we move to optimizations that have been proposed over the years, from
scheduling to compression and load balancing. Advanced compositing on mod-
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ern supercomputing architectures, however, is the main topic of this chapter,
in particular 2-3 swap and radix-k for petascale HPC machines.

5.1 Introduction

The motivation for studying image compositing is the same as in most of
this book: datasets consisting of trillions of grid points and thousands of time
steps are being produced by machines with hundreds of thousands of cores,
with hundreds of millions of cores expected by the end of this decade. Machine
architectures are growing not only in size, but in complexity, with multidimen-
sional topologies and specialized hardware such as smart network adaptors,
direct memory access, and graphics accelerators. Against this backdrop, scien-
tists in high-energy physics, climate, and other domains are demanding more
of visualization: real-time, multivariate, time-varying methods that maximize
data locality and minimize data movement.

Data size, problem complexity, system size, and science expectations all
demand that visualization be done in parallel using sort-last parallel rendering,
sometimes at the full scale of a high-performance supercomputer. This means
that each parallel process generates a finished image of its subset of the data,
and these images must be combined into one final result. The composition of
these images is the critical last step in parallel rendering and the subject of
this chapter.

Legacy image compositing algorithms were were invented for much smaller
systems. Beginning with the mid 1990s, we will review the direct-send and
binary-swap algorithms. Optimizations such as compression, identification of
active pixels, and scheduling further improved performance. In the early 2000s,
production compositing libraries implementing many of these features ap-
peared, and they remain in use today.

New advances in the last five years have featured more architecture aware-
ness of HPC systems. The late 2000s yielded compositing algorithms with
higher degrees of concurrency, scalability, and flexibility in the form of 2-3
swap and radix-k algorithms, and the early 2010s showed continued optimiza-
tion at very large scale and implementation of latest innovations in production.
We will highlight some results of these recent advances with both theoreti-
cal and actual performance, and the chapter concludes with a look ahead to
future directions in highly parallel image compositing.
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FIGURE 5.1: Sort-last image compositing

5.2 Basic Concepts and Early Work in Compositing

We begin with a review of parallel rendering followed by a formal definition
of image compositing. Next, we review classical image compositing algorithms
and optimizations. Throughout this chapter, we will use the term process to
designate a task executed in parallel with other processes, where processes each
have separate memory address spaces and communicate via passing messages.

The previous chapter classified parallel rendering according to when ras-
terized images are sorted [17]: sort-first, sort-middle, and sort-last. One way to
understand the difference in these methods is to identify what is distributed
and what is replicated among processes.

In sort-first rendering, the image pixels are usually distributed, and the
dataset is typically replicated. HPC applications generate datasets many times
larger than the memory capacity of a single node, so sort-first rendering is not
frequently encountered in high-performance visualization. Sort-middle render-
ing attempts to combine the best of sort-first and sort-last with both image
pixels and data voxels distributed among processes. This is difficult to imple-
ment and even harder to scale, because the portion of the data that a process
needs to maintain depends on the viewpoint and requires redistribution when
the view frustum changes.

This leaves sort-last rendering as the only practical approach to large-
scale parallel rendering. Data are distributed while pixels are replicated, and
each process is responsible for rendering a complete image of its subset of
data. Of course, sort-last rendering comes at a cost, and that price is paid in
compositing when the pixels at each process must be combined into one final
image. The basic idea is illustrated in Figure 5.1. The dataset is partitioned
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among processes; rendering occurs locally at each process, and the resulting
images are composited at the end.

5.2.1 Definition of Image Composition

Image composition is the reduction of several images into one. It involves
two subproblems: communicating two or more images to one location where
the reduction can occur and the computation of the reduction itself. The
formal definition of image composition, therefore, is a definition of each of
these subproblems, beginning with the reduction operator.

Reduction is a binary operation, where one of the inputs is the current
value of the pixel (pold), and the other is an incoming value (pnew), accumu-
lated with pold to produce an updated value: p = f(pold, pnew). The exact
definition of f depends on the application. For example, f can select the pixel
with the closer depth value or the greater intensity, or it can be a combination
of the two pixel values. A common example is the over operator [23], a linear
combination of pold and pnew, where p = (1.0 − αold) ∗ pnew + pold. Here, p
represents the pixel color and opacity components, each computed separately,
and α is the pixel opacity only.

Because f often depends on the depth order of blended input pixels, f
is assumed to be noncommutative for the general case of compositing semi-
transparent pixels. In general, f(pold, pnew) 6= f(pnew, pold), and moreover, if
the final value of f is derived from a sequence (functional composition) of
individual operations, f = f1 ◦ f2 ◦ ... ◦ fn, then the ordering of f1 through
fn cannot be permuted without changing the value of f . Image composition
is associative, however, so (f1 ◦ f2) ◦ f3 = f1 ◦ (f2 ◦ f3). The remainder of
this chapter addresses the communication subproblem, beginning with the
problem definition.

A valid image composition requires that the final value of a pixel is derived
from values of the same pixel on all processes. At first glance this may appear
to be an all-to-all communication pattern, with p2 messages sent and received
among p number of processes. Because f is accumulated via individual fi
as shown above, however, each process can contribute to the final value f
without communicating directly with every other process. Hence, a simple
linear communication pattern with p− 1 messages suffices.

We can often do better by parallelizing this sequence with tree and pipeline
communication patterns that trade fewer than p− 1 communication steps (or
rounds) for a greater total number of messages, where each round involves
multiple messages. The goal is for these multiple messages per round to be
independent and for the network to support their concurrent transmission,
thereby reducing the total communication cost to O(log p).

While the final image is often gathered to a single process, this is not
strictly necessary, and a distributed result is not only acceptable but often
desirable. In message-passing literature, this is an example of a reduce-scatter
noncommutative collective, and many algorithms for such collectives have
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FIGURE 5.2: Example of the direct-send algorithm for 4 processes.

been published [4, 3, 31, 2, 30, 25, 8, 5, 12, 13]. As we will see later in this
chapter, we can do even better with top-down knowledge of image composition
and of current HPC architectures.

The representation of pixels in terms of number of bytes and whether to
use integer or floating-point depends on the implementation, but because the
value f can accumulate over many rounds, 4-byte floating-point precision for
each channel is advisable. A depth value per pixel may also be needed in some
circumstances.

5.2.2 Fundamental Image Composition Algorithms

Stompel et al. [28] surveyed methods for sort-last compositing, and Cavin
et al. [6] analyzed relative theoretical performance of these methods. These
overviews show that compositing algorithms usually fall into one of three cat-
egories: direct-send, tree, and parallel pipeline. Pipeline methods are seldom
found in practice and are not covered here.

In direct-send, each of p processes takes ownership of 1/p of the final
image, and all other processes send this subset of their images to the owner
[10, 21]. Figure 5.2 shows an example of four processes executing a direct-send.
The outermost rectangles represent each of the original images prior to com-
positing. The smaller highlighted rectangles represent the final image portions
owned by each process after compositing. The arrows represent transmission
of image pieces from sender to receiver. If process P0 is the owner of the top
1/4 of the image, then P1, P2, and P3 each send the top 1/4 of their image to
P0 to composite. The same thing happens at the other processes for the other
three quarters of the image.

When p is large, direct-send can congest the network with many simul-
taneous messages. One remedy for relieving network contention is to use a
tree for compositing. Figure 5.3 illustrates a hypothetical tree with a variety
of group sizes. Tree methods mete out the work in levels of the tree, which
we call rounds, and in each round, images are exchanged between a small
number of processes. While direct-send tries to do as much work as quickly as
possible by generating the maximum number of messages in a single round,
tree methods strive for a measured approach that generates fewer simultane-
ous messages over more rounds. We will see later that trees can be designed
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FIGURE 5.3: Tree-based compositing.

to span a broad range of this spectrum, but first let us consider perhaps the
best-known binary tree compositing algorithm, binary-swap.

Ordinary tree compositing, as Figure 5.3 shows, causes many of the pro-
cesses that were busy in early rounds to idle as execution proceeds to later
rounds. Eventually, at the root of the tree, one process is performing the en-
tire composition sequentially. To solve this bottleneck and keep all processes
busy, Ma et al. [15] introduced the binary-swap algorithm. Figure 5.4 shows a
binary-swap example of four processes and two rounds. Each process composes
the incoming portion of the image with the same part of the image that it
already owns. By continually swapping, all processes remain busy throughout
all rounds. In each round, neighbors are chosen twice as far apart, and image
portions exchanged are half as large as in the previous round. This is why
binary-swap is also called a distance-doubling and vector-halving communica-
tion algorithm in some contexts.

Since the mid 1990s when direct-send and binary-swap were first pub-
lished, numerous variations and optimizations to the basic algorithms have
appeared. The basic ideas are to reduce active image regions using the spa-
tial locality and sparseness present in many scientific visualization images, to
better balance load after such reduction, and to keep network and computing
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FIGURE 5.4: Example of the binary-swap algorithm for 4 processes and 2
rounds.
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resources appropriately loaded through scheduling. We highlight examples of
each of these ideas below.

Run-length encoding images achieves lossless compression [1], and using
bounding boxes to identify the nonzero pixels is another way to reduce the
active image size [15]. These optimizations can minimize both communication
and computation costs.

Load balancing via scan line interleaving [29] assigns individual scan lines
to processes such that each process is assigned numerous disconnected scan
lines from the entire image space. In this way, active pixels are distributed
more evenly among processes, and workload is better balanced. The drawback
is that the resulting image must be rearranged once it is composited, which
can be expensive for large images.

The SLIC [28] algorithm combines direct-send with active pixel encod-
ing, scan-line interleaving, and scheduling of operations. Spans of compositing
tasks are assigned to processes in an interleaved fashion. Another way to sched-
ule processes is to assign them different tasks. This is the approach taken by
Ramakrishnan et al. [26], who scheduled some processes to perform rendering
while others were assigned to compositing. The authors presented an optimal
linear-time algorithm to compute this schedule.

Image compositing has also been combined with parallel rendering for tiled
displays. The IceT library, from Moreland et al. [19], performs sort-last render-
ing on a per-tile basis. Within each display tile, the processors that contributed
image content to that tile perform either direct-send or binary-swap composit-
ing. Although the tile feature of IceT is not used much in practice, IceT has
become a production-quality library that offers a robust suite of image com-
positing algorithms to scientific visualization tools. Both ParaView [32] and
VisIt [9] use the IceT library for image compositing.

5.2.3 Image Compositing Hardware

While this chapter primarily studies the evolution of software compositing
algorithms, it is worth noting that hardware solutions to the image com-
positing problem exist as well. Some of these have been made commercially
available on smaller clusters, but as the interconnects and graphics hardware
on visualization and HPC machines have improved over time, it has become
more cost-effective to use these general-purpose machines for parallel render-
ing and image compositing rather than purchasing dedicated hardware for
these tasks.

Sepia [16] is one example of a parallel rendering system that included PCI-
connected FPGA boards for image composition and display. Lightning-2 [27]
is a hardware system that received images from the DVI outputs of graphics
cards, composited the images, and mapped them to sections of a large tiled
display. Muraki et al. [20] described an eight-node Linux cluster equipped with
dedicated volume rendering and image composition hardware. In a more recent
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system, the availability of programmable network processing units accelerated
image compositing across 512 rendering nodes [24].

5.3 Recent Advances

Although the classic image composition algorithms and optimizations have
been used for the past fifteen years, new processor and interconnect advances
such as direct memory access and multidimensional network topology present
new opportunities to improve the state of the art in image compositing.

We hinted earlier at the relationship between direct-send and binary-swap
through a tree-based representation. We will explain that connection now and
use it to develop more general algorithms that combine both techniques. Two
recent algorithms will be presented as examples of more general communica-
tion patterns that can exploit new hardware: 2-3 swap and radix-k.

5.3.1 2-3 Swap

Yu et al. [33] extended binary-swap compositing to nonpower-of-two num-
bers of processors with an algorithm they called 2-3 swap. One goal of this
algorithm is to combine the flexibility of direct-send with the scalability of
binary-swap, and the authors accomplished this by recognizing that direct-
send and binary-swap are related and can be combined into a single algorithm.

Any natural number greater than one can be expressed as the sum of
twos and threes, and this property is used to construct the first-round group
assignment in the 2-3 swap algorithm. The algorithm proceeds to execute a
sequence of rounds with group sizes that are either between two and five.
Each round can have multiple group sizes present within the same round. The
number of rounds r is equal to the floor of log p, where p is the number of
processes and need not be a power of two, as is the case for binary-swap.

An example of 2-3 swap using 7 processes is shown in Figure 5.5. In the
first round, shown on the left, processes form groups in either twos or threes,
as the name 2-3 swap suggests, and execute a direct-send within each group.
(Direct-send is the same as binary-swap when the group size is two.) In the
second round, shown on the right, the image pieces are simply divided into a
direct-send assignment, with each process owning 1/p, or 1/7 in this example,
of the image. By assigning which 1/7 each process owns, however, Yu et al.
proved that the maximum number of processes in a group is five, avoiding the
contention in ordinary direct-send. Figure 5.5 shows that indeed, process P5

receives messages from four other processes, while all other processes receive
messages from two or three others.
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FIGURE 5.5: Example of the 2-3 swap algorithm for 7 processes in 2 rounds.
Group size is 2 or 3 in the first round, and between 2 and 5 in the second
round.

5.3.2 Radix-k

The next logical step in combining and generalizing direct-send and binary-
swap is to allow more combinations of rounds and group sizes. To see how this
is done, we begin by adopting the following terminology. Let ki represent the
number of processes in a communication group in round i. The k-values for
all rounds can be written as the vector ~k = [k1, k2, ..., kr], where the number
of rounds is denoted by r. Within each group, a direct-send is performed. The
total number of processes is p.

More than a convenient notation, this terminology makes clear the rela-
tionship among the previous algorithms. We can now define direct-send as
r = 1 and ~k = [p]; and binary-swap as r = log p and ~k = [2, 2, 2, ...]. Just as
2-3 swap was an incremental step in combining direct-send and binary-swap
by allowing k-values that are either 2 or 3, it is natural to ask whether other
combinations of r and ~k are possible. The radix-k algorithm [22] answers this
question by allowing any factorization of p into

∏r
i=1 ki = p. In radix-k, all

groups in round i are the same size, ki.
Figure 5.6 shows an example of radix-k for p = 12 and ~k = [4, 3]. The

processes are drawn in a 4 × 3 rectangular layout to identify the rounds and
groups clearly. In this example, the rows on the left side form groups in the
first round, while the columns on the right side form second-round groups. A
convenient way to think about forming groups in each round is to envision
the process space as an r-dimensional virtual lattice, where the size in each
dimension is the k-value for that round. This is the convention followed in
Figure 5.6 for two rounds drawn in two dimensions.
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FIGURE 5.6: Example of the radix-k algorithm for 12 processes, factored into
2 rounds of ~k = [4, 3].

The outermost rectangles in the figure represent the image held by each
process at the start of the algorithm. During the round i, the current image
piece is further divided into ki pieces, such that the image pieces grow smaller
with each round. The image pieces are shown as highlighted boxes in each
round.

Selecting different parameters can lead to many options; in the example
above we could have chosen ~k = [12], [6, 2], [2, 6], [3, 4], or [2, 2, 3], to name

a few. With judicious selection of ~k, we can attain higher compositing rates
when the underlying hardware offers support for multiple communication links
and the ability to perform communication and computation simultaneously.
Even when hardware support for increased parallelism is not available or the
image size or number of processes dictates that binary-swap or direct-send is
the best approach, those algorithms are valid radix-k configurations.

5.3.3 Optimizations

Kendall et al. [11] extended radix-k to include active pixel encoding and
compression, and they showed that such optimizations benefit radix-k more
than its predecessors, because the the choice of k-values is configurable. Hence,
when message size is decreased by active pixel identification and encoding,
k-values can be increased and performance can be further enhanced. Their
implementation encodes nonempty pixel regions, based on bounding box in-
formation, into two separate buffers: one for alternating counts of empty and
nonempty pixels and the other for the actual pixel values. This way, new sub-
sets of the image can be taken by reassigning pointers rather than copying
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pixels, and images remain encoded throughout all of the compositing rounds.
Nonoverlapping regions are copied from one round to the next without per-
forming the blending operation.

A set of empirical tests was performed to determine a table of target k-
values for different image sizes, number of processes, and architectures at
both the Argonne and Oak Ridge Leadership Computing Facilities. Platforms
tested included IBM Blue Gene/P, Cray XT, and two graphics clusters. With
this table, radix-k can look up the closest entry for a given image size, system
size, and architecture, and automatically factor the number of processes into
k-values as close to the target value as possible.

Moreland et al. [18] deployed and evaluated optimizations in a production
framework, rather than in isolated tests: IceT serves as both this test and pro-
duction framework. The advantages of this approach are that tests represent
real workloads, and improvements are ready for production use sooner. These
improvements include minimizing pixel copying through compositing order
and scan-line interleaving, and a new telescoping algorithm for nonpower-of-
two number of processes that can further improve radix-k. A final advantage
of using IceT for these improvements is that IceT provides unified and repro-
ducible benchmarks that other researchers can repeat.

One of those improvements was devising a compositing order that min-
imizes pixel copying. The usual, accumulative order causes nonoverlapping
pixels to be copied up to ki − 1 times in round i, whereas tree methods only
incur log ki copy operations. Pixel copying can further be reduced while us-
ing a novel image interlacing algorithm. Rather than interleaving partitions
according to scan-lines, as in [29], Moreland et al. realized that a desired prop-
erty of the interleaving is that processes retain contiguous pixel regions after
compositing, so as to not require further rearranging. The van der Corput
sequence is one example of such an ordering.

While radix-k natively handles nonpower-of-two number of processes, it
does not always do so gracefully. Some process counts, especially those with
factorizations containing large prime numbers, can exhibit pathological perfor-
mance. Moreland et al. [18] also devised a telescoping algorithm for nonpowers-
of-two that continually looks for largest subgroups that are powers of two, and
performs radix-k within each subgroup. Subgroups are further composited to-
gether afterwards.

5.4 Results

The theoretical communication and computation costs of direct-send,
binary-swap, and radix-k are compared in Table 5.1 using the cost model
in Chan et al. [7]. This model assumes p processors in a distributed-memory
parallel architecture, and the original image size has n total pixels. The com-
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TABLE 5.1: Theoretical Lower Bounds for Compositing Algorithms

Algorithm Latency Bandwidth Computation
direct-send αp/k nβ(p− 1)/p nγ(p− 1)/p
binary-swap α log2 p nβ(p− 1)/p nγ(p− 1)/p
radix-k α logk p nβ(p− 1)/p nγ(p− 1)/p

munication cost is α + nβ, where α is the latency per message and β is the
transmission time per data item (reciprocal of the link bandwidth). The com-
putation time to compose one pixel is γ, making the total time to transmit
and reduce a message consisting of n data elements α+ nβ + nγ. The model
further assumes a fully connected network, where k messages can occupy the
network without link contention and no overlap between communication and
computation.

Some of those assumptions are not true in practice, but calculating the rel-
ative cost of communication algorithms is simplified under these conditions.
In actual implementations, radix-k group sizes vary between 8 and 128, de-
pending on the architecture and optimizations, and there is overlap between
communication and computation on modern HPC systems that radix-k uses
to further boost performance.

Nonetheless, Table 5.1 shows that in theory, radix-k should perform as well
or better than other algorithms, a theory confirmed in Figure 5.7, which shows
a test of the original algorithm in Peterka et al. [22] for a variety of process
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FIGURE 5.7: Performance comparing binary-swap with radix-k for an image
size of 8 megapixels. Left: process counts from 32 to 1,024 in increments of 32.
Right: the same test continued at larger scale in increments of 1,024 processes.
No optimizations, such as compression or active pixel encoding, were applied
to either algorithm for this test.
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FIGURE 5.8: Target k-values for two different machines are shown. Opti-
mizations such as active pixel encoding enable the use of higher k-values than
before. In the original algorithm, k = 8 was used, but the tables above show
that with active pixel encoding, k-values as high as 128 are optimal, depending
on the machine.

counts from 32 to 34,816 on the Intrepid Blue Gene/P supercomputer at
Argonne National Laboratory. These graphs compare binary-swap and radix-
k using k-values of 8 whenever possible, and include no other optimizations
such as compression. In the left graph, process count increases by 32 at each
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FIGURE 5.9: Performance comparing optimized binary-swap with radix-k
shows overall improvement in volume rendering tests of core-collapse super-
novae.
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FIGURE 5.10: Core-collapse supernova volume rendered in parallel and com-
posited using the radix-k algorithm.

data point up to 1024 processes, while the right graph is a continuation of
the test by adding one Blue Gene rack (1,024 nodes) at each data point. On
average, radix-k is approximately 20% to 40% faster than binary-swap.

The speedup increases when optimizations such as active pixel encoding
are enabled. While the target k-value for Intrepid was 8 in the original algo-
rithm of [22], Figure 5.8 shows that with optimizations, target k-values can
be as high as 128. The reason is that smaller message sizes produced by active
pixel encoding and compression allow more messages to be injected into the
system without contention. The resulting performance is shown in the strong
scaling study of Figure 5.9. With the optimizations of Kendall et al. [11],
performance is up to five times better than binary-swap with the same op-
timizations. These tests were conducted while parallel volume rendering the
core-collapse supernova shown in Figure 5.10. Scientists visualize such simula-
tions in order to understand the physics of thermonuclear and hydrodynamic
instabilities in the death of some of the most massive stars in the universe.

5.5 Discussion and Summary
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5.5.1 Conclusions

The radix-k algorithm allows the number of message partners per round
and the number of rounds to be adjusted to maximize performance for a given
problem size and architecture. Algorithms such as radix-k and 2-3 swap build
on the previous contributions of binary-swap and direct-send, generalizing and
unifying two algorithms that previously were considered separately. Now, we
understand that binary-swap and direct-send are just two points in an entire
parameter space of configurations.

Optimizations to radix-k such as active pixel encoding enabled the use
of higher k-values, up to 128 in practice, and overall performance can be
improved over binary-swap by up to five times for identical optimizations.
Such improvements enable strong scaling at the full scale of HPC machines
such as IBM Blue Gene and Cray XT, compared to legacy algorithms whose
performance bottomed-out at a few thousand processes.

It is now possible to compose large-size images interactively as well; sub-
second compositing of images up to 64 megapixels has been demonstrated on
actual volume rendering of core-collapse supernova datasets. Finally, all of
these improvements are now available in IceT for production use in tools such
as ParaView and VisIt. For example, the latest version of IceT in ParaView
enabled up to seven times faster image compositing and the ability to scale to
36,000 processes, which was not possible with previous versions of the library.

Of course, these improvements are predicated on an underlying architec-
ture that can support additional message concurrency. Today, HPC networks
have multiple data paths and DMA access and thus can benefit from highly
parallel algorithms such as radix-k. Because it is reasonable to expect more
scientific visualizations to execute on supercomputers in the future, making
efficient use of these architectures for compositing will be a critical part of the
high-performance visualization pipeline.

Modern compositing algorithms have demonstrated a tangible impact for
high-performance visualization and computational science. They allow scien-
tists to render higher resolution images, at larger system scales, faster than
before. Together, all of these benefits can result in increased understanding
of scientific data, and they will be absolutely essential going forward toward
exascale computing.

5.5.2 Directions for Future Research

Highly parallel image compositing offers several avenues for continued ex-
ploration. Load balance in both computation and communication can be fur-
ther improved and combined with fine-grained delineation of active pixels.
Other potential solutions to load balancing may be found in time-varying
parallel rendering, where the additional time dimension poses new scheduling
opportunities.

New architectures are creating the need for continued study. Network
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topologies such as higher-dimensional torus networks are being investigated,
as are clouds and distributed collections of heterogeneous processing ele-
ments [14]. With the ubiquity of multicore processors, a natural next step
is to parallelize the computing of the compositing operator across several pix-
els. Hybrid parallelism that combines message passing with shared-memory
threading is being studied in numerous algorithms; image compositing can
also potentially benefit from the hybrid programming models in Chapter 12.

Algorithms such as radix-k require empirical experiments to find appropri-
ate k-values for a particular architecture, but there exists a trend in commu-
nication algorithms toward self-tuning. Hence, another area for further study
is automating parameter selection.
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